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Abstract Two-dimensional loop-erased random walks (LERWs) are random planar curves
whose scaling limit is known to be a Schramm-Loewner evolution SLEκ with parameter
κ = 2. In this note, some properties of an SLEκ trace on doubly-connected domains are
studied and a connection to passive scalar diffusion in a Burgers flow is emphasised. In
particular, the endpoint probability distribution and winding probabilities for SLE2 on a
cylinder, starting from one boundary component and stopped when hitting the other, are
found. A relation of the result to conditioned one-dimensional Brownian motion is pointed
out. Moreover, this result permits to study the statistics of the winding number for SLE2 with
fixed endpoints. A solution for the endpoint distribution of SLE4 on the cylinder is obtained
and a relation to reflected Brownian motion pointed out.

Keywords Loop-erased random walks · Stochastic Loewner evolution · Stochastic
processes · Burgers equation

1 Introduction

The Schramm-Loewner Evolution SLEκ is a one-parameter family of conformally invariant
measures on non-self-crossing planar curves. In many cases, interfaces in two-dimensional
models of statistical mechanics at criticality are conjectured to be described by SLE. For
example, the scaling limit of the planar loop-erased random walk (LERW) is known to be
SLE2, interfaces in the 2D Ising model SLE3 and critical percolation hulls to be described
by SLE6. While these systems can be also studied using traditional methods of theoretical
physics like (boundary) conformal field theory and Coulomb gas methods, Schramm has
given a novel and rigourous approach via conformally invariant stochastic growth processes.

LERWs were the starting point and motivation for the development of SLE in Schramm’s
seminal paper [30]. Today their scaling limits and relations to SLE are well understood in
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simply-connected domains, where conformal invariance was shown by Lawler, Schramm
and Werner [27]. Properties in multiply-connected domains are more involved but much
recent progress was obtained, e.g. in a series of works by Dapeng Zhan [32–34]. In this
paper, we mainly study properties of planar LERWs/SLE2 in doubly-connected domains,
emerging from one boundary component and conditioned to finish when hitting the second
boundary component. In contrast to the simply-connected case, curves in doubly-connected
domains may wind non-trivially around various boundary components. Here we concentrate
on these winding properties of loop-erased random walks on cylinders in two cases: (1) with
one endpoint fixed on one boundary component, and the other endpoint free on the other
boundary component, (2) with both endpoints fixed on different boundary components. We
establish these results by solving a differential equation arising from SLEκ with κ = 2 on the
cylinder. Another motivation to study the cylinder is that numerical simulations of critical
systems are often performed in a cylinder geometry, see e.g. [12].

The paper is organised as follows. In Sect. 2 we give a brief description of SLE. In
particular, we outline two variants of SLE in simply-connected domains which prove to be
limits (in some sense) of the doubly-connected case. After this we discuss SLE on cylinders,
being prototypes of doubly-connected domains. Section 3 provides a detailed discussion on
endpoint probabilities and winding properties of SLEκ on cylinders. Inspired from analogies
with diffusion-advection in (1 + 1)-dimensional Burgers flows, we present analytical results
for the case κ = 2, study various limits and point out a relation between the winding of
LERWs and conditioned one-dimensional Brownian motion. Finally, conditioning walks to
exit via a given point, we derive the winding statistics for LERW with fixed endpoints on the
cylinder. In Sect. 4, somewhat aside the main topic, we provide the endpoint distribution in
the case κ = 4 and point out a relation to reflected two-dimensional Brownian motion. We
conclude in Sect. 5. The appendix contains computations of exit probabilities for Brownian
motion and random walks on the lattice, in relation to distributions of exit points for SLE2

and their finite-size corrections. It also contains a partial (periodised) result about bulk left-
passage probabilities with respect to a point in the covering space of the cylinder, as well as
a path-integral version of the endpoint distribution problem.

2 Basic Notions of SLE

In this Section we give an informal description of SLE. For detailed accounts we refer the
reader to the many existing excellent review articles on this subject (see e.g. [6, 13, 26]).

Stochastic Loewner evolutions (SLE) describe the growth of non-intersecting random
planar curves or hulls emerging from the boundary of planar domains D by means of sto-
chastic differential equations. A crucial feature of SLE is conformal invariance: if two do-
mains D and D

′ are related by a conformal mapping g(z), then the image of SLE in D is SLE
in D

′. Another key property is the so-called domain Markov property of SLE. Conditioning
on the curve/hull γt grown up to time t in D, the remainder of the curve is just SLE in the
slit domain Dt = D\γt . In fact, these two properties (almost) imply that the growing hulls
are characterised by a single positive parameter κ .

For simply-connected domains, conformal invariance and the Riemann mapping theorem
naturally lead to a description of the curves in terms of conformal mappings gt (z) which
uniformise Dt to D, and map the tip of γt to some point on the boundary of D. gt (z) is
solution of a differential equation in t with initial condition gt=0(z) = z, called the Loewner
equation. SLE in simply-connected domains comes in different flavours, according to which
the Loewner differential equation varies. In Sect. 2.1, we shall concentrate on so-called
radial and dipolar SLEs.
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Compared to simply-connected domains, SLE in multiply-connected domains proves
to be more involved because no equivalent of the Riemann mapping theorem is at hand
[5, 10, 32, 33]. In this article, we concentrate on doubly-connected domains D with the
topology of an annulus. Their boundary is given by two disjoint simple curves ∂1D and ∂2D.
A classical theorem of complex analysis states that each such a domain may be mapped
onto the annulus Ap = {z ∈ C | e−p < |z| < 1} with some p > 0, such that for example
∂1D is mapped to |z| = 1 and ∂2D to |z| = e−p . Conformal invariance of SLE legitimates
the choice of Ap as a reference domain. However, we shall rather work with a cylinder
Tp = {z = x + iy ∈ C |−π < x ≤ π, 0 < y < p}, identifying x = −π and x = π . The
cylinder Tp may always be mapped back onto Ap via the conformal mapping w = eiz. The
height of the cylinder p > 0 is called the modulus, and the boundary components are given
by ∂1Tp = [−π,π] and ∂2Tp = [−π,π ] + ip which we shall refer to as “lower” and “up-
per boundary” respectively. We shall study hulls γt growing from z = 0 ∈ ∂1Tp to ∂2Tp as
shown on Fig. 1a and b. In Sect. 2.2, we analyse the Loewner equation for gt (z) mapping
Tp\γt to some cylinder Tq with (in general) different modulus q �= p. A mapping back
to Tp does not exist since one may show that there is no conformal mapping sending a
cylinder of modulus p to a cylinder of modulus q �= p [29]. Moreover, we show how the
doubly-connected version of SLE on Tp interpolates between radial and dipolar SLE.

2.1 SLE in Simply-Connected Domains

Before embarking into considerations on general values for the modulus p we shall consider
limiting cases of semi-infinite cylinders p → +∞ and very thin cylinders p → 0+ in order
to establish a connection with well-known variants of SLE in simply-connected domains.

p → +∞ and radial SLE. Radial SLE starts from a boundary point x0 ∈ ∂D to a bulk
point x∞ ∈ D of some simply-connected planar domain D. Its Loewner equation is most
conveniently written for the unit disc D = U from x0 = 1 to x∞ = 0 where

dgt (z)

dt
= −gt (z)

gt (z) + eiξt

gt (z) − eiξt
, (1)

where ξt is some real-valued function of t ≥ 0 and gt (0) = 0 (the point x∞ remains
unchanged during time evolution). The time parametrisation has been chosen so that
g′

t (0) = et . The real-valued function ξt is related to the image of the tip τt of the grow-
ing trace γt by gt (τt ) = eiξt . In fact, conformal invariance and the domain Markov property
imply that ξt = √

κBt + αt is simple Brownian motion with a diffusion constant κ and a
linear drift αt . If we ask for reflection symmetry (or left-right-symmetry) as it occurs in
physical systems (and throughout this paper), the drift vanishes α = 0. For later considera-
tions, we outline another useful version of radial SLE. In fact, the unit disc U may be sent
to the semi-infinite cylinder T∞ via the conformal mapping w = −i log z (here the principal
branch of the logarithm has been chosen). In this geometry, the Loewner equation for the
new uniformising map g̃t (z) is given by

dg̃t (z)

dt
= cot

(
g̃t (z) − ξt

2

)
, ξt = √

κBt . (2)

obtained from (1) using gt (z) = exp[ig̃t (w(z))].
Since we aim at studying winding probabilities, let us recall how to give an intuitive

(yet non-rigorous) argument in order to estimate the distribution of the winding angle θt
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for large t [13]. For the unit disc U as t 
 1, the tip of the radial SLE trace τt approaches
z = 0. We may therefore write gt (τt ) = eiξt ≈ et τt , by using the Taylor series expansion
gt (z) = etz + · · · near z = 0, from what follows τt ≈ e−t+iξt . Hence the winding angle θt =
arg τt ≈ ξt turns out to be a Gaussian random variable with zero mean and variance κt . For
the infinite cylinder T∞, the winding angle corresponds to the real part of the tip allowed to
vary continuously on R, and its probability distribution is approximately given by

λr(t, x) ≈ 1√
2πκt

exp

(
− x2

2κt

)
, for large t. (3)

The intuitive argument should be taken with caution since the power series expansion of
gt (z) has a radius of convergence less than |τt |. However, Schramm has shown by rigorous
methods that indeed θt/

√
κt converges to a Gaussian with unit variance in the limit t →

∞ [30] as suggested by (3). Within later considerations on doubly-connected domains we
bypass these difficulties by providing exact solutions (at least for κ = 2) of the winding
angle problem, without making reference to approximate series expansions.

p → 0+ and dipolar SLE. Another version of SLE is obtained by considering planar
curves in a simply-connected domain D from a boundary point x0 ∈ ∂D to a side arc S ⊂ ∂D

[7] not containing x0. Let us choose the geometry of an infinite strip Sp = {z ∈ C |0 <

Im z < p} of height p, x0 = 0 and S = R + ip. Then Loewner’s equation is given by

dgt (z)

dt
= π

p
coth

[
π(gt (z) − ξt )

2p

]
. (4)

gt (z) maps the tip of the trace γt to ξt . Again, because of conformal invariance, the domain
Markov property and reflection symmetry we have ξt = √

κBt . The trace γt hits the bound-
ary arc R + ip at some (random) point x + ip as t → +∞. This version of SLE is related to
the cylinder problem on Tp in the limit p → 0+. Loosely spoken, if p is very small the SLE
trace will not feel the periodicity of the cylinder but only hit the upper boundary close to the
point ip on the upper boundary (this statement can be made more precise, see below). The
equivalent to the winding angle distribution for radial SLE is the probability distribution of
this exit point for dipolar SLE, which we shall denote λd(p, x). For any κ it is given by [7]

λd(p, x) =
√

π �(1/2 + 2/κ)

2p �(2/κ)

1

[cosh(πx/2p)]4/κ
. (5)

2.2 Stochastic Loewner Evolution on Doubly-Connected Domains

Let us now turn to the case of general modulus p. The Loewner equation for the uniformising
map gt (z) of SLEκ on Tp is given by [33]

dgt (z)

dt
= H

(
p − t, gt (z) − √

κ Bt

)
(6)

with standard Brownian motion Bt and the function

H(p, z) = lim
n→∞

n∑
k=−n

cot
( z

2
− ikp

)
= cot

z

2
+

∞∑
k=1

2 sin z

cosh 2kp − cos z
. (7)
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The process is defined between t = 0 (g0(z) = z) where the trace starts from point z = 0 on
the lower boundary up to t = p where the SLE trace hits the upper boundary at some random
point γp with Imγp = p. The time parametrisation of the curves is chosen in such a way
that gt (z) maps Tp\γt to Tq with q = p − t . One possible way to derive (6) and (7) is by
considering an infinitesimal hull, and using invariance properties of Tp , namely translation
invariance z → z + a, a ∈ R and reflection invariance z → ip − z (see [5] where this has
been explicitly carried out for an annulus geometry).

Let us describe the properties of the function defined in (7). H(p, z) is an odd
function in z with period 2π . Furthermore it is quasi-periodic in the imaginary direc-
tion: H(p, z + 2ip) = H(p, z) − 2i. Moreover, notice the interesting property H(p, z) =
(iπH(π2/p, iπz/p) − z)/p. It may be used in order to derive an alternative series expan-
sion

H(p, z) = π

p
lim

n→∞

n∑
k=−n

coth

(
π(z + 2πk)

2p

)
− z

p
. (8)

For large positive p, we have H(p − t, z) = cot(z/2) + · · · as it can be seen from (7).
Therefore, as we let p → +∞, the Loewner equation (6) reduces to the one for radial SLE,
defined in (2). The dipolar limit p → 0+ is more involved. Consider the function ht (z) =
gt (z) − √

κBt mapping Tp\γt to Tp−t and the tip τt of the curve to 0. Rescaling ks(z) =
π ht (z)/(p − t) maps the problem to a cylinder of fixed height π , and width 2π2/(p − t).
The new mapping ks(z) depends on a time s = π2/(p − t), 0 ≤ t < p. Performing the
time change leads to a stochastic differential equation dks(z) = iH(s, iπks(z))ds − √

κ dB̃s

where B̃s is another standard Brownian motion, obtained from the time-change formula.
Now, as p → 0+ we have s → +∞ so that we may use H(s, z) ∼ cot z/2 + · · ·. Finally for
Ks(z) = ks(z) + √

κ B̃s , we find the dipolar Loewner equation

dKs(z)

ds
= coth

(
Ks(z) − √

κ B̃s

2

)
(9)

in the limit s → +∞.

The covering space. In the sequel it shall be convenient to lift the processes to the cov-
ering space of the cylinder Tp . In fact, this is simply obtained by allowing Reγt to vary
continuously on R. An illustration is given on Fig. 1b. It is easy to see that the difference
between the endpoints of a given trace on the cylinder and its analogue on the covering
space is always given by 2πN with an integer N . We shall call N the winding number of
the SLE trace. For the covering space, the Loewner equation (6) still holds. However, prob-
abilities and probability densities computed on the covering space have different boundary
conditions when compared to the periodic case of cylinders [33].

3 Endpoint Probabilities for SLE on the Cylinder

In this section, we characterise the endpoint distributions for SLE on cylinders of height
p which we denote �(p,x), −π ≤ x ≤ π . To be precise, �(p,x)dx corresponds to the
probability that the trace hits the upper boundary within Reγp ∈ [x, x + dx] for some infin-
itesimal dx. In order to study the winding of the traces around the cylinder, we introduce an
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Fig. 1 (a) Illustration for SLE on an annulus Ap from 1 to the target circle |z| = e−p . (b) SLE on the cylinder
and the covering space: the shaded region represents the cylinder, with sides x = −π and x = π identified.
We obtain the covering space by periodic extension along the real axis. The endpoints on the cylinder and the
covering space differ by 2πN where N denotes the winding number of the trace. The interfaces are samples
of loop-erased random walks

analogous object λ(p,x), x ∈ R for the covering space. Results on the cylinder are obtained
upon identification of points differing by 2πn:

�(p,x) =
∞∑

n=−∞
λ(p,x + 2πn). (10)

3.1 Endpoint Distributions for General κ

In order to compute �(p,x) consider the SLE trace γdt evolving for an infinitesimal time
dt on the cylinder Tp . The uniformising map gdt (z) maps the remainder of the curve γp\γdt

onto SLE in a cylinder Tp−dt starting at
√

κ dB0. Under this mapping gdt (z) the point x + ip

on the upper boundary of Tp is sent to some point x ′ + i(p − dt) on the upper boundary
of Tp−dt , with x ′ = x + (H(p,x + ip) + i)dt , see (6). Using the Markov property and
conformal invariance of the SLE measure we obtain, upon averaging over the infinitesimal
Brownian increment dB0, the equation

�(p,x)dx = EdB0 [�(p − dt, x ′ − √
κ dB0)dx ′]. (11)

An expansion to first order in dt , using EdB0 [dB0] = 0 and EdB0 [dB2
0 ] = dt , leads to the

Fokker-Planck equation

∂�(p,x)

∂p
= ∂

∂x
(v(p, x)�(p,x)) + κ

2

∂2�(p,x)

∂x2
, (12)

where we have introduced the drift function (compare with (7))

v(p,x) = H(p,x + ip) + i = π

p
lim

N→∞

N∑
n=−N

tanh
π(x + 2πn)

2p
− x

p
. (13)

Like H(p, z) the drift function v(p, z) is an odd and periodic function with period 2π .
Furthermore, it is quasiperiodic in imaginary direction: v(p, z + 2ip) = v(p, z) − 2i. No-
tice that λ(p,x) is a solution of (12) as well, however with vanishing boundary conditions
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for x → ±∞. Leaving aside the identification of the points x and x + 2π , we ask for the
probability

ω(p,x) =
∫ x

−∞
dy λ(p,y) (14)

that the SLE traces hits the upper boundary to the left of a given point x + ip on the covering
space. It is solution of the convection-diffusion equation

∂ω(p,x)

∂p
= v(p,x)

∂ω(p,x)

∂x
+ κ

2

∂2ω(p,x)

∂x2
, (15)

with boundary conditions limp→0+ ω(p,x) = �(x), limx→+∞ ω(p,x) = 1 and
limx→−∞ ω(p,x) = 0. Here �(x) denotes the Heaviside function which is 1 for x > 0,
and 0 otherwise. It is a remarkable property of the function v(p,x) to be a solution of the
(1 + 1)-dimensional Burgers equation

∂v(p, x)

∂p
= v(p,x)

∂v(p, x)

∂x
+ ∂2v(p,x)

∂x2
, (16)

where p plays the role of time and viscosity is set to unity [33]. In fact, this equation even
holds for complex x. Furthermore is can be shown that H(p, z) obeys the same equation by
using the relationship between H(p, z) and v(p, z). Hence we interpret (15) as the evolution
equation of a passive scalar convected and diffusing in the Burgers flow −v(p,x), also
described by a Langevin equation:

dxp = −v(p,xp)dp + √
κdBp. (17)

The problem of finding SLE probabilities for arbitrary κ can thus be reformulated as find-
ing the density of a passive scalar convected by a (particular) one-dimensional Burgers flow
(along x). In its general formulation it is a classic problem [4, 11, 17, 19, 20, 28] charac-
terised by the dimensionless Prandl number P [21], with P = 2/κ for our problem.

By means of the well-known Cole-Hopf transformation [15, 23] we rewrite

v(p,x) = 2
∂

∂x
ln ε(p, x), (18)

where ε(p, x) satisfies the diffusion equation ∂ε(p, x)/∂p = ∂2ε(p, x)/∂x2 with solution

ε(p, x)=
+∞∑

n=−∞
(−1)n exp

(
inx−n2p

)=
√

π

p

+∞∑
n=−∞

exp

(
− (x−π−2πn)2

4p

)
(19)

corresponding to an initial condition ε(0, x) = 2π
∑∞

n=−∞ δ(x − π − 2πn). In the language
of Burgers equation this corresponds to an initial condition at p = 0+ with a periodic set of
shocks at positions xs

n = 2πn. As the “time” p increases the shocks are broadened by the
viscosity and acquire a width proportional to p, leading to the smooth periodic function (13).
Finding the solution of (12) for general κ is a complicated time-dependent problem, and only
results in special cases are obtained below (see Appendix 4 for a path-integral formulation).

In the limit of large modulus p 
 1 the drift term in (12) vanishes like v(p,x) ∼
4e−p sinx. Therefore we recover a simple diffusion equation for the endpoint distribution
λ(p,x) which, in terms of the scaling variable x/

√
p, converges to the Gaussian result
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for radial SLE (3). However if one does not rescale x, there are non-trivial corrections
and one expects instead that the cumulants converge at large p to κ dependent constants,
〈x2n〉c − κp δn,2 → X2n,κ , as shown explicitly below for κ = 2. Going from Tp to an an-
nulus with radii R1 > R2 = R1e

−p via the conformal mapping w = R1e
iz (see Fig. 1a for

an illustration) we obtain the winding angle distribution θ = x for SLE starting from the
outer boundary and stopped when first hitting the inner boundary (or the reverse if we admit
reversibility of annulus SLE). We expect its cumulants of the winding angle to have the form

〈θ2n〉c = κ ln(R1/R2)δn,2 + X2n,κ (20)

in the limit of large R1/R2. This is more precise than the standard result obtained from
Coulomb gas methods [13, 18], or the argument given for radial SLE, namely 〈θ2〉 =
(4/g) ln(R1/R2) with 4/g = κ (see (3)), since the universal constants X2n,κ take explic-
itly into account the presence of the two boundaries. One can compare to the corresponding
cumulative distribution of the winding angle for the standard two-dimensional Brownian
motion with absorbing conditions on the boundary of the annulus (it can be obtained from
dipolar SLE with κ = 2, the direct derivation being recalled in Appendix A.1.1)

ωb(θ) = 1

1 + e−πθ/ ln(R1/R2)
(21)

which yields much larger cumulants 〈θ2n〉c ∼ (ln(R1/R2))
2n with prefactors given below in

the context of dipolar SLE.
As p → 0+ a simple argument allows to recover the dipolar SLE hitting probability (5)

from the form of Burgers shocks, which are well separated in that limit. Let us suppose
that we may restrict (13) to a single shock, vs(p, x) = −x/p + π/p tanh(πx/2p), i.e. take
an initial condition ε(0, x) = 2π(δ(x + π) + δ(x − π)). This gives a potential u(p,x) =
2 log ε(p, x) = −x2/2p + 2 log cosh(πx/2p) + const. which in the scaling region x ∼ p

strongly confines the diffusing particle described by (12) near the origin. One easily checks
that the (adiabatic) Gibbs measure λadiab(x,p) ∼ e−(2/κ)u(p,x) = C(p)ε(x,p)−4/κ = λd(x,p)

satisfies (12) in the region x ∼ p (the term ∂λ(p,x)/∂p on the l.h.s. being subdominant).
One can be more precise and rescale ξ = x/p. The new probability ω̃(p, ξ) = ω(p,x) is
solution of the differential equation

p2 ∂ω̃(p, ξ)

∂p
= ṽ(p, ξ)

∂ω̃(p, ξ)

∂ξ
+ κ

2

∂2ω̃(p, ξ)

∂ξ 2
, (22)

where ṽ(p, ξ) = p(v(p,x) + ξ). Inserting the single shock profile one finds ṽs (p, ξ) =
π tanh(πξ/2), i.e. a stationary velocity field. Hence we may convince ourselves that the
stationary solution of (22) is ∂ωstat (p, x)/∂x = λd(p, x), i.e. the convergence to the dipolar
result (5) includes also (non exponential) subdominant terms in the scaling region x ∼ p.
Interesting exact solutions of (22) for all p are easily obtained from a Laplace transform in
τ = 1/p or using methods as in [21], but do not obviously relate to SLE.

3.2 Results for κ = 2 and the Winding of Loop-Erased Random Walks

The Cole-Hopf transformation (18) will lead to interesting simplifications allowing to treat
explicitly κ = 2. This case corresponds to the scaling limit of the LERW on the cylinder.
First we recall its definition on the lattice [26]. Consider a rectangular lattice domain of
lattice mesh δ embedded into the cylinder domain Tp . Start a simple random walk W from
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Fig. 2 Illustration of loop-erasure on the cylinder for a square lattice. (a) A Brownian excursion from z = 0
to the upper boundary y = p. (b) Loop-erasure of the same walk. Loops like (14,15, . . . ,27), winding around
the cylinder for several times, may be erased

0 to Re z = y = p with absorbing boundary conditions for y = 0 (see Fig. 2a). Chronological
loop erasure from W yields a simple path γ on the lattice domain which is the LERW (see
Fig. 2b). Notice that the endpoints of W and γ always coincide. However, the random walk
may wind several times around the cylinder whereas its loop erasure does not. This makes
it a non-trivial exercise to compute the winding properties of the latter (i.e. its endpoint
distribution on the covering space). As the lattice mesh δ goes to 0, the paths W converge
to two-dimensional Brownian excursions on Tp whereas the paths γ converge to SLE2 on
Tp [34].

Since the endpoints of W and γ coincide on the cylinder Tp , we may find the endpoint
distribution for SLE2 by a simple computation on Brownian excursion on the cylinder, start-
ing from z = 0 and stopped as soon as it hits altitude y = p (see Appendix A.1.1). The result
is

�2(p, x) = π

4p

∞∑
n=−∞

1

(cosh( π(x+2πn)

2p
))2

. (23)

An equivalent result for random walks on a finite cylindrical lattice domain is presented in
Appendix 2. Indeed, �2(p, x) solves (12) for κ = 2 with periodic boundary conditions and
may be related to the drift function v(p,x) via �2(p, x) = (p ∂v(p,x)/∂x + 1)/2π [33].
Moreover, it corresponds to the periodised endpoint distribution (5) for dipolar SLE with
κ = 2.

In order to compute the winding probabilities and to find the distribution on the covering
space λ(p,x), we solve (15) with boundary conditions as indicated above. The idea is to
write ω(p,x) = α(p,x)ψ(p,x) and impose that terms proportional to ∂ψ(p,x)/∂x can-
cel, which, for arbitrary κ , yields α(p,x) ∝ ε(p, x)−2/κ [21]. It turns out that the function
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ψ(p,x) is solution to

∂ψ(p,x)

∂p
=

(
2 − κ

2κ

)
∂v(p, x)

∂x
ψ(p,x) + κ

2

∂2ψ(p,x)

∂x2
. (24)

Hence for κ = 2 we have a simple diffusion equation ∂ψ(p,x)/∂p = ∂2ψ(p,x)/∂x2 with
initial condition

ψ(0, x) = ε(0, x)ω(0, x) = 2π

∞∑
n=−∞

δ(x − π − 2πn)�(x). (25)

In this case the solution therefore is immediate:

ψ(p,x) =
∫ ∞

−∞

dy√
4πp

e−(x−y)2/4p ψ(0, y) =
√

π

p

∞∑
n=0

e−(x−π(2n+1))2/4p. (26)

Thus, for κ = 2 the endpoint probability reads

ω2(p, x) =
∑∞

n=0 exp(−(x − π(2n + 1))2/4p)∑∞
n=−∞ exp(−(x − π(2n + 1))2/4p)

=
∑∞

n=0 exp(πn(x − π(n + 1))/p)∑∞
n=−∞ exp(πn(x − π(n + 1))/p)

. (27)

Note that ω(p,x) = ψ(p,x)/(ψ(p,x) + ψ(p,−x)). The endpoint distribution is given by

λ2(p, x) =
∑∞

n,m=0(m+n+1) exp(− (x−π−2πn)2+(x+π+2πm)2

4p
)

(p ε(p, x)/π)2
. (28)

This result is exact and allows to analyse for κ = 2 how the SLE trace wraps around the
cylinder. An illustration of the distributions is given in Fig. 3. Some remarks are at order.
First of all, we have checked through tedious calculation that (28) inserted in (10) correctly
reproduces (23). Second, the very particular form of (27), given by a ratio of propagators
for one-dimensional Brownian motion, suggests that it might be obtained as a conditional
probability for a simple one-dimensional process. Indeed, such a relation can be established
(see Sect. 3.3). Moreover, notice an interesting relation to (boundary) conformal field theory.
Setting q = exp(−2π2/p), we see that the different terms in (27) contain qh1,n+1 where

Fig. 3 The endpoint
distributions �2(p, x) and
λ2(p, x) for SLE2 in the
case p = π
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h1,n = dimψ1,n = n(n − 1)/2 are the scaling dimensions of the operators ψ1,n, creating
n − 1 curves at the boundary, for the O(N = −2) model [14]. Finally, one may hope that
the simplifications in the case κ = 2 for the endpoint probabilities may be extended to bulk
probabilities of the cylinder and the covering space, a case which we treat (partially) in
Appendix 3.

The closed forms (27) and (28) converge well in the dipolar limit p → 0+, however are
not suitable for computations in the radial limit p → +∞. Therefore, we study the moment
generating function 〈e−μx〉 here below, and shall give an exact expression adapted to both
limits. To this end, it will be useful to consider ω2(p, z) = ψ(p, z)/ε(p, z) for complex z.
From (27) we see that it is periodic with period 2ip. Moreover, since the denominator can
be written as an infinite product [1]

ε(p, z) ∝
∞∏

k=1

(
1 − eiz−(2k−1)p

) (
1 − e−iz−(2k−1)p

)
(29)

(up to a p-dependent prefactor), we conclude that the function ω2(p, z) has simple poles in
the complex plane for zk,� = (2k − 1)ip + 2π�, k, � ∈ Z. In order to compute the generating
function, we write

〈e−μx〉 = μ

∫ ∞

−∞
dx e−μxω2(p, x), μ > 0. (30)

Deformation of the integration contour in the complex plane from R to R + 2ip leads to
two distinct contributions. First, the integration along R + 2ip simply yields e−2ipμ〈e−μx〉
because of the periodicity of ω2(p, z). Second, we must take into account the simple poles
at z� = z1,� = ip + 2π�, � ∈ Z and compute the corresponding residues. Solving for 〈e−μx〉,
we find

〈e−μx〉 = 2πiμ

1 − e−2ipμ

∑
�∈Z

res
z=z�

e−μzω2(p, z)

= πμ

sinpμ

∑
�∈Z

e−2πμ�ψ(p, ip + 2π�)

(
∂ε(p, ip + 2π�)

∂z

)−1

. (31)

The sum can explicitly be computed because the derivative of ε(p, z) at z = z� does not
depend on � by periodicity. After a little algebra we obtain

〈e−μx〉 = pμ

sinpμ

1

sinhπμ

∑∞
�=0(−1)� sinh((2� + 1)πμ)e−π2�(�+1)/p∑∞

�=0(−1)�(2� + 1)e−π2�(�+1)/p
. (32)

For large p it is convent to transform this expression into a dual series

〈e−μx〉 = epμ2
πμ

sinhπμ

1

sinpμ

∑∞
�=0(−1)� sin((2� + 1)pμ)e−p�(�+1)∑∞

�=0(−1)�(2� + 1)e−p�(�+1)
(33)

by using identities for Jacobi theta functions [1] or Poisson’s summation formula. Let us
now study the radial and dipolar limit of our result.

Limit p → +∞. In the radial limit, we may write (33) as

〈e−μx〉 = πμepμ2

sinhπμ

(
1+2e−2p(1− cos 2pμ)

) + O(e−4p). (34)
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In fact, it is possible to recover this result by approximation of ε(p, x) with its series ex-
pansion (19) and Gaussian integration. The result turns out to be finite result for all μ

since the probability decays as a Gaussian at large x, i.e. 1 − ω2(p, x) = ω2(p,−x) ∼
exp(−(x + π)2/4p) as x → +∞, up to a prefactor periodic in x. We take the logarithm
and find a cumulant expansion

log〈e−μx〉 =
∞∑

k=1

(−1)k〈xk〉c μk

k!

= pμ2 + log

(
πμ

sinhπμ

)
+ 2e−2p(1 − cos 2pμ) + O(e−4p). (35)

The result shows that, as announced above, we do not recover a Gaussian distribution in the
limit p → +∞, in contrast to the simple argument from radial SLE. It rather provides all
the constants X2n,κ=2 from the Taylor series expansion of the function log[πμ/(sinhπμ)]
with respect to μ. For instance, we find

〈x2〉c = 2p − π2/3 + 8p2e−2p + O(e−4p), (36)

〈x4〉c = 2π4/15 − 32p4e−2p + O(e−4p) (37)

up to corrections of the form pne−4p .

Limit p → 0+. In the dipolar limit, we expand the cumulant generating function, using
(32), as

log〈e−μx〉 = log

(
pμ

sinpμ

)
− 4 sinh2(πμ)e−2π2/p. (38)

Hence the first two non-vanishing cumulants are given by

〈x2〉c = p2/3 − 8π2e−2π2/p + O(e−4π2/p), (39)

〈x4〉c = 2p4/15 − 32π4e−2π2/p + O(e−4π2/p). (40)

Since the first corrections to the dipolar result at small p originate from erasure of a single
loop wrapping around the cylinder, it seems plausible that the probability for erasing such
a loop behaves like exp(−2π2/p) in the limit p → 0+. This factor has indeed the same
magnitude as the probability that planar Brownian motion on Tp winds by at least 2π around
the cylinder (we recall the winding distribution for Brownian motion in Appendix A.1.1).

Notice that the dipolar limit presents a subtlety, which does not allow to conclude imme-
diately from expansion of the probability ω2(p, x). For any fixed x such that −π < x < π

we find estimate as p → 0+ (a neighbourhood of size ∼ p of the points ±π must be ex-
cluded):

ω2(p, x) = 1

1 + e−πx/p
+ tanh

(
πx

2p

)
e−2π2/p + o(e−2π2/p). (41)

Up to exponential corrections, and uniformly in the interval ]−π,π[, we recover the dipolar
result (5) for κ = 2. However, the approximation is not uniform beyond this interval what
leads to complications when computing moments by using this approximation.
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3.3 Probabilistic Argument for κ = 2

The simplifications for SLE2 seem surprising at first sight. Here we shall try to understand
the underlying mechanism by giving a probabilistic argument for the simple solution of (15)
by (27) in the case κ = 2.

Let us consider the stochastic process Xt = gt (x + ip) − i(p − t) − √
κBt with initial

condition X0 = x. It describes the motion of a given point x + ip on the upper boundary of
the cylinder under the flow gt (z) and is solution of the stochastic differential equation

dXt = v(p − t,Xt )dt + √
κdBt . (42)

In particular, it has been shown that limt→p− Xt = (2k+1)π with k ∈ Z (almost surely) [33].
We may relate the probability that the SLE trace hits the upper boundary of the covering
space within (−∞, x] to Xt via

ω(p,x) = P[Reγp ∈ (−∞, x]] = P[Regt (γp) ∈ (−∞,Regt (x + ip)]]
=

t→p
P[√κ Bp ∈ (−∞,Regp(x + ip)]] = Px[Xp ≥ 0], (43)

where Px denotes “probability”, taking into account that the process starts from x. Along
these lines we have used the conformal invariance of the SLE measure, leading to invariance
of probabilities under conformal transport.

We now show that the right hand side of (43) may be computed easily by establishing a
relation to conditioned Brownian motion. Consider the process xt = √

κBt of simple Brown-
ian motion with diffusion constant κ on the interval I = [−π,π], identifying its endpoints,
which starts from x0 = x ∈ I . We introduce the propagator via P (y, t;x)dy = Px[xt ∈
[y, y+dy]]. It is solution of the diffusion equation ∂P (y, t;x)/∂t = (κ/2)∂2P (y, t;x)/∂x2,
and explicitly given by

P (y, t;x) = 1√
2πκt

∞∑
n=−∞

exp

(
− (y − x − 2πn)2

2κt

)
. (44)

Let us condition xt to arrive at xp = π (mod 2π) for some given time p > 0. Using ele-
mentary facts about conditional probabilities we see that the new process has a propagator
Q(y, t;x) defined via

Q(y, t;x)dy = Px[xt ∈ [y, y + dy] |xp = π (mod 2π)]

= P (π,p − t;y)

P (π,p;x)
P (y, t;x)dy, for 0 < t < p. (45)

The conditioning therefore leads to a drift [16] that can be read off from the diffusion equa-
tion for Q(y, t;x):

∂Q(y, t;x)

∂t
= −κ

∂

∂y

((
∂

∂y
lnP (π,p − t;y)

)
Q(y, t;x)

)
+ κ

2

∂2Q(y, t;x)

∂y2
(46)

Specialising to κ = 2, we conclude that the conditioned process is solution of the stochastic
differential equation

dxt = 2

(
∂

∂x
lnP (π,p − t;xt )

)
dt + √

2 dBt

= v(p − t, xt )dt + √
2 dBt . (47)
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Hence we see that in the case κ = 2 the motion Xt induced by the Loewner mapping gt (z)

on the upper boundary of the cylinder is the same as Brownian motion xt on a circle, starting
from x and conditioned to visit π (mod 2π) at time t = p. However, it is a simple exercise
to compute the statistics of the winding number of the latter. Again, we shall say that xt has
winding number N = n if its equivalent on the covering space R of I arrives at x + 2πn at
time t . From simple conditioning, we have

Px[N = n | xp = π (mod 2π)] = exp(−(π − x + 2πn)2/2κp)∑∞
n=−∞ exp(−(π − x + 2πn)2/2κp)

. (48)

Summation over n from 0 to ∞ yields the announced result for κ = 2

ω(p,x) = Px[Xp ≥ 0] =
∑∞

n=0 exp(−(x − π(2n + 1))2/4p)∑∞
n=−∞ exp(−(x − π(2n + 1))2/4p)

. (49)

Thus we have shown that we may indeed reinterpret the winding of SLE2 in terms of the
winding of a conditioned one-dimensional Brownian motion. In fact, this is the profound
reason explaining why the preceding transformation leads to simplifications for κ = 2.

3.4 The Winding of Loop-Erased Random Walks with Fixed Endpoints

In this Section we consider the case of a LERW with fixed endpoints from 0 to x + ip,
−π ≤ x ≤ π in the cylinder geometry. On the covering space, it is thus allowed to exit at
x + 2πN + ip with arbitrary winding number N ∈ Z. We shall be interested in the law of
N which may be obtained by conditioning LERWs to exit at the given boundary points.

Let us ask for the probability that the LERW has made N = n windings if we condition
its trace to exit on a subinterval [a, b] + ip, −π ≤ a, b ≤ π on the upper boundary. It is
given by

P[N = n |Reγp ∈ [a, b]] = P[N = n ∩ Reγp ∈ [a, b]]
P[Reγp ∈ [a, b]]

=
∫ b

a
dx λ2(p, x + 2πn)∫ b

a
dx �2(p, x)

, (50)

where �2(p, x) and λ2(p, x) are the distributions defined in (23,28). Taking the limit a, b →
x amounts to forcing the LERW to exit at x + ip. It has been noted previously that (at least
for simply-connected domains) this procedure of conditioning leads to chordal SLE2 from
0 to x + ip [3, 9, 25]. Supposing that this property holds for doubly-connected domains as
well, we obtain the statistics of the winding number of SLE2 with fixed endpoints 0 and
x + ip on the boundary of Tp:

P0→x+ip[N = n] = λ2(p, x + 2πn)

�2(p, x)
= λ2(p, x + 2πn)∑∞

k=−∞ λ2(p, x + 2πk)
, (51)

where −π < x < π . This result is non-trivial (at least for us), since there does not seem
to exist an obvious way to recover this probability law from considerations of underlying
random walks/Brownian motions.
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As an application of (51) we compute the generating function for the moments of N . For
μ > 0 let us write

〈
e−μN

〉 = 1

�2(p, x)

∞∑
n=−∞

e−μnλ2(p, x + 2πn)

= 1

�2(p, x)

∂

∂x

(
1

ε(p, x)

∞∑
n=−∞

e−μnψ(p,x + 2πn)

)

= 1

�2(p, x)

epμ2/4π2

2 sinh(μ/2)

∂

∂x

(
eμx/2πε(p, x + pμ/π)

ε(p, x)

)
. (52)

Strictly speaking, the calculation is valid for μ > 0 but the result extends to negative μ, too.
The result may be used in order to study the winding behaviour in the radial and dipolar
limit.

Radial limit. For p → +∞, we find a generating function for the cumulants given by

log
〈
e−μN

〉 = μx

2π
+ pμ2

4π2
+ log

(
μ/2

sinh(μ/2)

)
+ O(e−p), (53)

where we have used in that limit �2(p, x) → 1/(2π). As in Sect. 3.2 the cumulants 〈Nn〉c
with n > 2 converge to constants which can be obtained from the Taylor series expansion of
the function log[μ/(2 sinh(μ/2))] with respect to μ. Corrections to this limit are exponen-
tially small ∝ e−p .

Dipolar limit. Having in mind the discussion in Sect. 3.2, we expect the probability dis-
tribution of N to be concentrated at N = 0 as p → 0+ (independently of the value taken by
|x| < π ), and the probabilities for events occurring with N �= 0 to be exponentially small
∝ e−2π2/p . By means of explicit computation we find

〈
e−μN

〉 = 1 + 4 sinh
(μ

2

)(
2 sinh

(
2πx + μp

2p

)
+ sinh

(
4πx + μp

2p

))
e−2π2/p (54)

up to corrections of the order of O(e−4π2/p), what confirms the preceding discussion.

4 Endpoint Probabilities for κ = 4 on the Cylinder

It is surprising that we obtain the endpoint distribution on the cylinder κ = 2 by periodisation
of the equivalent dipolar result (5). For κ = 4 we have applied the same idea to look for a
solution in the form of a 2π -periodised result found in dipolar SLE4. These two values seem
to be the only ones for which the periodisation yields exact results. The case κ = 4 is related
to the massless free field theory with central charge c = 1. In fact, SLE4 curves arise as zero
lines of the field ϕ(z, z) emerging from discontinuities in Dirichlet boundary conditions.
Moreover, SLE4 arises in the scaling limit of several lattice models such as the harmonic
explorer and domino tilings [24, 31]. A variant of the harmonic explorer leading SLE4 in
doubly-connected domains as discussed in this article was suggested in [33].
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In this section, we shall show that the periodic endpoint distribution

�4(p, x) = 1

2p

∞∑
n=−∞

1

cosh[ π(x+2πn)

2p
] (55)

is solution of (12) with κ = 4. Let us notice, that (55) corresponds to the endpoint dis-
tribution of two-dimensional Brownian motion on the cylinder with reflecting boundary
conditions for y = 0, stopped for the first time when it reaches altitude y = p (see Appen-
dix A.1.2).

We analytically continue �4(p, z) to complex z ∈ C and introduce the function

g(p, z) = ∂�4(p, z)

∂p
− ∂

∂z
(v(p, z)�4(p, z)) − 2

∂2�4(p, z)

∂z2
(56)

with v(z,p) as defined previously. If �4(p, z) is a solution of (12) with κ = 4 then g(p, z)

must vanish for z ∈ R. We shall even show that g(p, z) vanishes for �4(p, z) defined in (55)
for all z ∈ C.

�4(p, z) is elliptic with periods ω1 = 2π and ω2 = 4pi and antiperiodic with respect to
the half-period ω2/2 = 2pi. Thus, g(p, z) is elliptic for all p with the same periods ω1 and
ω2 (as z → z+4pi, the additional term arising from the quasi-periodicity of v(p, z) is com-
pensated by the derivative of �4 with respect to p). We may therefore restrict our analysis to
the rectangle defined via −π < Re z < π and 0 < Im z < 4p. The poles of �4(p, z), v(p, z)

and their derivatives are located at z = ip and z = 3ip. The principal parts of the Laurent
series expansions at z = ip for the different terms in (56) read

∂�4(p, z)

∂p
= 1

π(z − ip)2
+ O(1),

∂2�4(p, z)

∂z2
= − 2i

π(z − ip)3
+ O(1),

∂(v(p, z)�4(p, z))

∂z
= 1

π(z − ip)2
+ 4i

π(z − ip)3
+ O(1). (57)

Insertion into (56) therefore shows that all divergent terms cancel out so that g(p, z) has a
removable singularity at z = ip. The Laurent expansion around z = 3ip leads to the same
result. In fact, we have

∂�4(p, z)

∂p
= − 3

π(z − 3ip)2
+ O(1),

∂2�4(p, z)

∂z2
= 2i

π(z − 3ip)3
+ O(1),

∂(v(p, z)�4(p, z))

∂z
= − 3

π(z − 3ip)2
− 4i

π(z − 3ip)3
+ O(1). (58)

Therefore g(p, z) has a removable singularity at z = 3pi, too. Hence it must be a constant
g(p, z) ≡ A(p) what follows from Liouville’s theorem [2]. However, because of g(p, z) =
−g(p, z + 2pi) we find A(p) = 0 for all p, so that g(p, z) ≡ 0 which is equivalent to say
that for κ = 4 the given form for �4(p, x) is the correct probability distribution function.

Let us note that (55) may be written in terms of the Burgers potential ε(p, x) as

�4(p, x) = N (p)
ε(p, x − π)

ε(p, x)
. (59)



SLE on Doubly-Connected Domains 247

The normalisation factor N (p) may be found in a similar way as (32) and (33), and is given
by

N (p) = 1

πε(p, ip − π)

∂ε(p, ip)

∂z
= 1

π

∑
n∈Z

(−1)nn e−n(n+1)p∑
n∈Z

e−n(n+1)p
. (60)

However, despite this very suggestive form of �4(p, x) as a ratio of two solutions to the
simple diffusion equation we have not found algebraic simplifications in order to solve the
partial differential equations for κ = 4 with general boundary conditions.

5 Conclusion

In this paper, we have studied winding properties of loop-erased random walks around a
finite cylinder by means of stochastic Loewner evolutions. Relating the computation of the
endpoint distribution λ(p,x) of SLEκ on a cylinder to a problem of diffusion-advection
of a passive scalar in a Burgers flow, we were able to explicitly determine λ2(p, x) in the
case κ = 2. The behaviour in the limit of very thin and very large cylinders was studied
and we pointed out a non-Gaussian behaviour of the winding properties for long cylinders.
Furthermore, conditioning the loop-erased random walks to exit via a given boundary point,
we were able to compute the probability distribution of the winding number for walks with
fixed endpoints. We have shown that the somewhat surprising simplifications for κ = 2 may
be related to the winding of conditioned one-dimensional Brownian motion on a circle.
Moreover, we have determined cylinder endpoint distribution in the case κ = 4. A relation
to reflected Brownian motion was pointed out. As for κ = 2, it is related to the periodisation
of the dipolar endpoint distribution. However, these seem to be the only values for κ for
which this property holds. It remains to see whether closed results can also be obtained for
other values of κ . We hope that our results can be useful to test recent conjectures [12] about
SLE properties of interfaces in numerical studies in a cylinder geometry.
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Appendix 1: Endpoint Distributions for Two-Dimensional Brownian Motion

In this appendix we compute the endpoint distribution for planar Brownian motion zt = xt +
iyt on the cylinder, starting from z = 0 and stopped as soon as it reaches the altitude y = p.
For simplicity, we first consider the geometry of an infinite strip {z ∈ C |0 < Im z < p} and
then periodise along the real axis in order to obtain the results on the cylinder Tp . The
diffusion in x−direction is unconstrained and has a propagator Px0=0[xt ∈ [x, x + dx]] =
exp(−x2/2t)dx/

√
2πt . For the motion in y-direction, we consider absorbing and mixed

boundary conditions.

A.1.1 Absorbing Boundary Conditions

Consider the motion in y-direction, starting from y0 = ε > 0. We shall impose absorbing
boundary conditions at y = 0 and y = p, and condition the process to exit at y = p. The
propagator PA(y, t) defined via PA(y, t)dy = Py0=ε[yt ∈ [y, y + dy]] is solution of the dif-
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fusion equation ∂PA(y, t)/∂t = 1/2 ∂2PA(y, t)/∂y2 and given by

PA(y, t) = 2

p

∞∑
n=1

sin

(
nπy

p

)
sin

(
nπε

p

)
exp

(
−n2π2t

2p2

)
. (61)

We obtain the exit-time distribution fA(t) at y = p from the probability current at this
point. However, if we condition the diffusion to exit at y = p, we furthermore must divide
this current by the exit probability Py0=ε[exit at y = p] = ε/p. Hence

fA(t) = − p

2ε

∂P (y, t; ε)
∂y

∣∣∣∣
y=p

= π

pε

∞∑
n=1

(−1)n+1n sin

(
nπε

p

)
exp

(
−π2n2t

2p2

)

= π2

p2

∞∑
n=1

(−1)n+1n2 exp

(
−π2n2t

2p2

)
, as ε → 0+. (62)

We obtain the distribution μA(p,x) of the endpoint by integration of the free propagator in
x-direction weighted by fA(t) with respect to time t :

μA(p,x) =
∫ ∞

0

dt√
2πt

exp

(
−x2

2t

)
fA(t)

= π

p

∞∑
k=1

(−1)k+1k e−πk|x|/p = π

4p

1

(cosh(πx/2p))2
. (63)

Periodisation in x with period 2π yields the endpoint distribution on the cylinder �2(p, x)

(23).

A.1.2 Mixed Boundary Conditions

Consider the same problem as above, but impose reflecting boundary conditions at y = 0
and absorbing boundary conditions at y = p. Let PM(y, t) the propagator in y-direction,
defined via PM(y, t)dy = Py0=0[yt ∈ [y, y + dy]]. It is solution of the diffusion equation
∂PM(y, t)/∂t = 1/2 ∂2PM(y, t)/∂y2 and given by

PM(t, y) = 2

p

∞∑
n=0

cos

(
(2n + 1)πy

2p

)
exp

(
− (2n + 1)2π2t

8p2

)
. (64)

As previously, we compute the exit-time distribution from the probability current at y = p:

fM(t) = π

2p2

∞∑
n=0

(−1)n(2n + 1) exp

(
− (2n + 1)2π2t

8p2

)
. (65)

Consequently the distribution of the exit point at the upper boundary of the strip reads

μM(p,x) =
∫ ∞

0

dt√
2πt

exp

(
−x2

2t

)
fM(t)

= 1

p

∞∑
n=0

(−1)n exp

(
− (2n+1)π |x|

2p

)
= 1

2p

1

cosh(πx/2p)
. (66)

Finally, periodisation with respect to x with period 2π leads to �4(p, x) for the cylinder Tp

(55).
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Appendix 2: Endpoint Distribution for Hexagonal Lattices

The purpose of this appendix is to give some idea about finite-size corrections to the scaling
limit on the cylinder. Here we evaluate the discrete equivalent to (23) and compute the
leading correction due to lattice effects. In principle, we dispose of a great variety for the
choice of the lattice. Finite-size corrections not only turn out to be dependent on the choice
of geometry, but on the lattice type as well. We shall content ourselves with the honeycomb
lattice—the most common choice.

We consider a finite lattice tube of m× l honeycombs, as shown in Fig. 4a. We decompose
the honeycomb lattice into two triangular sub-lattices whose sites are coloured by • and ◦.
Nearest neighbours of a •−site thus belong to the ◦−lattice and vice versa. We study lattice
walks starting from a •−site at the lower boundary to some any ◦−site at the upper boundary
and shall impose absorbing boundary conditions on ◦−sites at either boundary. In fact,
it shall be convenient to map the problem to a “brick wall” lattice as shown on Fig. 4b,
and introduce a suitable coordinate system. Then it is straightforward to write the master
equations for the probability P•/◦(x, y; t) that the walker starting from (0,0) can be found
at (x, y) at time t :

P◦(x, y; t + 1) = 1

3
(P•(x + 1, y; t) + P•(x − 1, y; t) + P•(x, y − 1; t)), (67)

P•(x, y; t + 1) = 1

3
(P◦(x + 1, y; t) + P◦(x − 1, y; t) + P◦(x, y + 1; t)) (68)

with boundary conditions P◦(x, y = 0; t) = P◦(x, y = l; t) = 0 and P•(x, y; t = 0) =
δx,0δy,0 where δi,j denotes the Kronecker symbol which takes the value 1 if i = j , and 0
otherwise. Moreover, identification of x and x + 2m leads to periodicity P◦(x + 2m,y; t) =
P◦(x, y; t), P•(x + 2m,y; t) = P•(x, y; t). We shall need the local occupation times
G•/◦(x, y) = ∑∞

t=0 P•/◦(x, y; t). The lattice walker is stopped if it walks from some •−site
at ye = 1 or ye = l − 1 to a ◦−site at ye = 0 or ye = l respectively, what happens with
probability 1/3. Therefore, the exit probability at the upper boundary is given by

P[xe = x, ye = l] = 1

3
G•(x, l − 1), (69)

where xe denotes the (random) horizontal position of the exiting walker. Notice that xe only
takes odd/even integer values for even/odd l. Combining (67, 68), it is possible to eliminate

Fig. 4 (a) Cylindrical lattice domain of 5 × 3 honeycombs with walk from lower to upper boundary. The
highlighted curve represent some walk from the lower to the upper boundary. (b) Coordinate system for
equivalent “brick wall” lattice
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G◦(x, y) and find the second-order difference equation

G•(x, y) = 1

6

(
G•(x + 2, y) + G•(x + 1, y + 1) + G•(x + 1, y − 1)

+ G•(x − 2, y) + G•(x − 1, y + 1) + G•(x − 1, y − 1)
)
, (70)

for 0 < y < l − 1. Using the boundary conditions, we furthermore find the equations

G•(x,0) = 1

8

(
G•(x + 1,1) + G•(x − 1,1)

)+9

8
δx,0 (71)

G•(x, l − 1) = 1

7

(
G•(x + 1, l − 2) + G•(x + 2, l − 1)

+ G•(x − 1, l − 2) + G•(x − 2, l − 1)
)
. (72)

Solving (70), (71) and (72) all together leads to a rather lengthy and tedious calculation. The
reader may find a detailed account of the strategy with applications to other lattice types in
[22]. Here we only sketch the solution.

First, we solve the bulk equation (70) by a separation ansatz G•(x, y) = P (x)Q(y).
Forming linear combinations of solutions found from this ansatz, we obtain the general bulk
solution

G•(x, y) = A0 + C0y + (Am + Cmy)(−1)x+y (73)

+
∑
k∈I1

(Ake
iαkx + Bke

−iαkx)(eγky + Cke
−γky)

+
∑
k∈I2

(−1)y(Ake
iαkx + Bke

−iαkx)(eγky + Cke
−γky),

where Ai , Bi and Ci are constants, I1 = {k ∈ Z |0 < k < m/2 ∨ 3m/2 < k < 2m} and I2 =
{k ∈ Z |m/2 < k < 3m/2, k �= m/2} index sets, and

αk = πk

m
, coshγk = 3 − cos 2αk

2| cosαk| and k = 0,1, . . . ,2m − 1 (74)

However, we exclude k = m. Moreover, for some technical reason the formula only is valid
as long as m is odd. The remaining constants are determined by matching (73) to (71) and
(72) what yields

Ak = Bk = 1

2m| cosαk| sinh(γkl)
, Ck = −e2γk(l−1) 1 + 2eγk | cosαk|

1 + 2e−γk | cosαk| ,

and A0 = Am = (3l − 1)/(4ml), C0 = Cm = −3/(4ml). Putting all pieces together, we find
the solution for (69). However, if we condition the walk to exit at the upper boundary, we
still have to divide by the probability P[ye = l] what amounts to a normalisation. After some
algebra we obtain the final result (for odd m)

P[xe = x|ye = l] = 1

m
+

(m−1)/2∑
k=1

2l cos(αkx) sinhγk

m sinhγkl
. (75)
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Having this lattice result, it is interesting to compute its scaling limit and study corrections.
In the case where m is odd, x takes even values from −(m − 1) to m − 1. Introducing a
lattice scale a such that x = ξ/a, ξ ∈ R, we would like to study the scaling limit a → 0+,
m, l → +∞ in such a way that the geometrical height p = √

3(l − 1/3)a and width 2π =
2am remain finite. Therefore

√
3l/m = p/π + a/(

√
3π).

�2(p, ξ, a) = 1

2a
P[xe = x|ye = l] =

√
3 l

πm

∞∑
k=−∞

k cos kξ

sinh(
√

3 (l/m)k)

= 1

4
√

3(l/m)

∞∑
n=−∞

1[
cosh

(
(x+2πn)

2
√

3(l/m)

)]2

=
(

1 + a√
3

∂

∂p

)
�2(p, ξ) + O(a2). (76)

We see that the first correction to the scaling limit is completely naturally proportional to
the lattice scale a.

Appendix 3: Analysis in the Bulk

This appendix collects some facts about bulk properties for SLE on the cylinder. Let us
denote the probability, that the trace γ passes to the left of some given point z on the covering
space by ω(p, z, z). It is solution of the diffusion equation

∂ω(p, z, z)

∂p
= H(p, z)

∂ω(p, z, z)

∂z
+ H(p, z)

∂ω(p, z, z)

∂z
+ κ

2

(
∂

∂z
+ ∂

∂z

)2

ω(p, z, z)

(77)

with boundary conditions ω(p, z, z) → 0 as Re z → −∞ and ω(p, z, z) → 1 as Re z →
+∞. The derivation of (77) is similar to (11) and (12), using an infinitesimal argument.
Using the relationship H(p, z) = v(p, z − ip) − i to the velocity field defined above and
(16), it is not difficult to show that H(p, z) is a Burgers flow, too. We have

∂H(p, z)

∂p
= H(p, z)

∂H(p, z)

∂z
+ ∂2H(p, z)

∂z2
. (78)

Using the Cole-Hopf transformation (18), we may write H(p, z) = ∂U(p, z)/∂z with
U(p, z) = 2 log ε(p, z − ip) − iz − p/2.

For κ = 2 as Im z → p− we require that ω(p, z, z) tends to λ2(p, x) (with x = Re z),
and ω(p, z, z) → �(x) as Im z → 0+. Although we have not found the solution with
these boundary conditions, we have determined a special solution ω̃(p, z, z) with a pe-
riodised version of these boundary conditions which has interesting relations to dipolar
SLE2. We ask that for Im z → p− it becomes ω̃(p, z, z) = ∫ x

0 dx �2(p, x) = (p v(p,x) +
x)/2π , and that for Im z → 0+ it reproduces the quasi-periodic step function ω̃(p, z, z) =
limn→∞

∑n

k=−n(sign (x − 2πk))/2.
Obviously, both H(p, z) and H(p, z) are solutions to (77), however with a simple pole

at z = 0. Inspired from the boundary condition at Im z = p, we shall consider the function
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f (p, z, z) = (Im z)(H(p, z) + H(p, z)), which has no pole. However, using the differential
operator A defined as

A =
[

∂

∂p
− H(p, z)

∂

∂z
− H(p, z)

∂

∂z
−

(
∂

∂z
+ ∂

∂z

)2
]

(79)

we see that Af (p, z, z) = −(H(z)2 − H(z)2)/2i. Hence we should find some solution to
Ag(p, z) = iH(z)2/2 without poles (since this would again lead to a singular solution).
Hence we have to search for a suitable g(p, z) with at most a logarithmic singularity at
z = 0. This can be done by observing that U(p, z) = 2 log ε(p, z− ip)− iz−p/2 is solution
to the equation

∂U(p, z)

∂p
= 1

2

(
∂U(p, z)

∂z

)2

+ ∂2U(p, z)

∂z2

= H(p, z)
∂U(p, z)

∂z
+ ∂2U(p, z)

∂z2
− 1

2
H(p, z)2 (80)

as can be seen from Burgers equation for H(p, z) (78). Hence we have found a solution
ω̃(p, z, z) = C1 + C2(f (p, z, z) − i(U(p, z) − U(p, z))), where C1, C2 are constants. It is
a solution of (77) without poles for 0 ≤ Im z ≤ p. The choice C1 = 1/2 and C2 = 1/4π

leads to the desired boundary conditions for ω̃(p, z, z):

ω̃(p, z, z) = 1

2
+ Im z

4π
(H(p, z) + H(p, z)) + i

4π
(U(p, z) − U(p, z)) (81)

ω̃(p, z, z) is related to ω(p, z, z) by periodisation

ω̃(p, z, z) = lim
n→∞

n∑
k=−n

(
ω(p, z + 2πk, z̄ + 2πk) − 1

2

)
(82)

i.e. we have only found a (quasi-)periodic version of ω(p, z, z̄).
The dipolar limit p → 0+ turns out to be quite interesting. In that limit the quasi-

periodicity is irrelevant and one obtains the result for dipolar SLE2. One can replace in that
limit H(p, z) → Hss(p, z) = π

p
cothπz/2p − z/p, the single shock expression, and the cor-

responding expression 2 log ε(p, z) ∼ −z2/(2p) + 2 log coshπz/2p, up to a p-dependent
unimportant constant. One then easily obtains from (81):

ω̃(p, z, z) + 1

2
∼ ωd(p, z, z) = 1 − 1

π
Im log sinh

πz

2p
+ Im z

4p

(
coth

πz

2p
+ coth

πz

2p

)
. (83)

This is nothing but the probability that dipolar SLE2 passes to the left of a given point z

within a strip of height p. It satisfies the general equation:
[

π

p
coth

πz

2p

∂

∂z
+ π

p
coth

πz

2p

∂

∂z
+ κ

2

(
∂

∂z
+ ∂

∂z

)2
]

ωd(p, z, z) = 0 (84)

studied in [7] where solutions could be found only for κ ≥ 4 (in the form of simple harmonic
functions). Here we recover, from a limit of a more general object defined on Tp , a result
for κ = 2 obtained only very recently by a rather different method [8]. The fact that (83)
satisfies both (84) (an equation with no ∂p terms) and the dipolar (i.e. single shock) limit
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of (77) (an evolution equation as a function of p) is easily understood by noting that it also
satisfies (p∂p + z∂z + z̄∂z̄)ωd(p, z, z̄) = 0. This equation expresses nothing but dilatation
invariance of the dipolar SLE, explicitly broken by the periodicity of cylinder geometries.

One may wonder whether there is a way to extend the known harmonic solutions [7] of
the dipolar limit, to the full cylinder. Here we only present the case κ = 4 which can be
constructed by integration of the result given in Sect. 4. In fact, this amounts to periodise the
result from dipolar SLE for a strip of height p

ωd(p, z, z) = 1 − 1

π
Im log tanh

πz

4p
(85)

in an appropriate way. Symmetric periodisation and leads to

ω̃(p, z, z) = lim
n→∞

n∑
k=−n

(
1

2
− 1

π
Im log tanh

(
π(z + 2πk)

4p

))
(86)

which is a harmonic solution to (77) with required boundary conditions at z = x + ip

ω̃(p, x + ip, x − ip) =
∫ x

0
dx �4(p, x). (87)

Appendix 4: Path Integral for General κ

Let us indicate how one can take advantage of (24) to express the solution of (12) as a path
integral for general κ . We may write

ψ(p,x) =
∫ ∞

−∞
dy K(p,x;y)ψ(0, y), (88)

where K(p,x;y) is the Euclidean propagator for (24). It given by a path-integral represen-
tation

K(p,x;y) =
∫ x(p)=x

x(0)=y

[dx(t)] e−S[x(t)], (89)

where the action is defined as

S[x(t)] =
∫ p

0
dt

(
ẋ(t)2

2κ
+ κ − 2

2κ

∂v(t, x(t))

∂x

)
. (90)

Hence, we find a nice path-integral representation [19, 20] for the general solution ω(p,x)

of (15):

ω(p,x) = ε(p, x)−2/κ

∫ ∞

−∞
dy ε(0, y)2/κω(0, y)

∫ x(p)=x

x(0)=y

[dx(t)] e−S[x(t)] (91)

which reproduces the exact solution (27) in the case κ = 2. It may be useful for perturbation
theory around κ = 2, using the Fourier series decomposition:

v(p,x) =
∞∑

n=1

4e−np

1 − e−2np
sin(nx) (92)

if one treats the apparent singular behaviour of ε(0, y)2/κ for κ �= 2 (e.g. shifting the inte-
gration from 0 to small p0 and using the known dipolar result for ω(p0, x)).
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